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Abstract

The vibration-based structural health monitoring problem is addressed as the double task of detecting
damages modelled as changes in the eigenstructure of a linear dynamic system, and localizing the detected
damages within (a finite element model (FEM) of ) the monitored structure. The proposed damage
detection algorithm is based on a residual generated from a stochastic subspace-based covariance-driven
identification method and on the statistical local approach to the design of detection algorithms. This
algorithm basically computes a global test, which performs a sensitivity analysis of the residuals to the
damages, relative to uncertainties and noises. How this residual relates to some residuals for damage
localization and model updating is discussed.

Damage localization is stated as a detection problem. This problem is addressed by plugging aggregated
sensitivities of the modes and mode shapes with respect to FEM structural parameters in the above setting.
This results in directional tests, which perform the same type of damage-to-noise sensitivity analysis of the
residual as for damage detection. How the sensitivity aggregation mechanism relates to sub-structuring is
outlined.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Detecting and localizing damages for monitoring the integrity of structural and mechanical
systems is a topic of growing interest, due to the aging of many engineering structures and
machines and to increased safety norms. Automatic global vibration-based monitoring techniques
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turn out to be useful alternatives to visual inspections or local non-destructive (e.g., ultrasonic)
evaluations performed manually.

Health monitoring techniques based on processing vibration measurements basically handle
two types of characteristics: the structural parameters (mass, stiffness, flexibility, damping) and the
modal parameters (modal frequencies, and associated damping values and mode shapes); see Refs.
[1–3] and references therein. A central question for monitoring is to compute changes in those
characteristics and to assess their significance. For the frequencies, the crucial issues are then: how
to compute the changes, to assess that the changes are significant, and to handle correlations

among individual changes. A related issue is how to compare the changes in the frequencies
obtained from experimental data with the sensitivity of modal parameters obtained from an
analytical model. Furthermore, it has been widely acknowledged that, whereas changes in
frequencies bear useful information for damage detection, information on changes in (the
curvature of ) mode shapes is mandatory for performing damage localization. Then, similar issues
arise for the computation and the significance of the changes. In particular, assessing the
significance of (usually small) changes in the mode shapes, and handling the (usually high)
correlations among individual mode shape changes are still considered as open questions [1–4].

Controlling the computational complexity of the processing of the collected data is another
standard monitoring requirement, which includes limited use of an analytical model of the
structure. Moreover, the reduction from the analytical model to the experimental model
(truncated modal space) is known to play a key role in the success of model-based damage
detection and localization [1,5].

The purpose of the present paper is to describe the foundations and analyze the properties
of a damage detection and localization method. This method is based on an approach which
aims at addressing the issues and overcoming (some of ) the limitations above. It is assumed
that a signature of the structure in its nominal (safe) state is available, typically a moderate
number of modes and a moderate number of components of associated mode shapes. This
signature is usually identified using reference data, possibly recorded under an unknown
non-stationary excitation. The proposed algorithm processes new data by first generating a
residual, and computing its sensitivity with respect to damages. The residual is shown to be
asymptotically Gaussian under both no damage and small damage assumptions. This results
in a global test, which performs a sensitivity analysis of the residual to the damages,
relative to uncertainties in the modal estimates and noises on the available data. Modal diagnosis
is stated as a detection problem: deciding which components of the modal parameter vector y
have changed. This problem is solved by designing similar w2-tests focussed onto the modal
subspaces of interest. Damage localization is stated as a detection problem, and not an (usually
ill-posed) inverse estimation problem. This problem is addressed by plugging aggregated
sensitivities of the modes and mode shapes with respect to finite element model (FEM)
structural parameters in the above setting. This results in directional tests, which perform
the same type of damage-to-noise sensitivity analysis of the residual as for damage detection.
The computation, the analytical-to-experimental matching and the aggregation of the
sensitivities are performed off-line at a design stage, whereas the directional tests may be
computed on-board. Several key concepts and techniques of this approach have already
been published by the same group of authors [6–12]. However no journal paper containing
the details of the damage localization method has been published. Moreover, it is one of the
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purposes of this paper to address crucial issues and well-known obstacles of model-based
vibration monitoring.

The paper is organized as follows. In Section 2, the modelling issues are introduced and some
key parameterizations and sensor type issues are discussed. Section 3 is devoted to the proposed
damage detection method, based on a general statistical local approach to the detection of small
deviations in the parameters of dynamic systems, and on a stochastic subspace-based covariance-
driven modal identification method. The off-line computation and the on-board analysis stage are
distinguished, and the effect of a truncated modal space is briefly discussed. In Section 4, the
modal diagnosis method, which handles residual sensitivities to damages and residuals
uncertainties is described. Damage localization is addressed in Section 5, where the off-line
computation and the on-board analysis stages are distinguished again. How the proposed method
relates to other works is addressed in Section 6, where residual design and structural aggregation
are discussed. Practical constraints and lessons learnt from application examples are also
commented on in this section. Some conclusions are drawn in Section 7.

2. Modelling and parameterizations

First, the main equations and parameters of the models which are used are recalled. Identifiable
and non-identifiable models are distinguished, and a useful invariance property of the modal
parameters is outlined. Then the effect of changing the sensor types is discussed. Finally, the
damage detection and localization problems investigated throughout are stated.

2.1. Dynamical model and structural parameters

It is assumed that the behaviour of the mechanical system can be described by a stationary
linear dynamical system, and that, in the frequency range of interest, the input forces can be
modelled as a non-stationary white noise. This results in:

M .ZðtÞ þ C ’ZðtÞ þ KZðtÞ ¼ nðtÞ; Y ðtÞ ¼ LZðtÞ; ð1Þ

where t denotes continuous time, M;C;K are the mass, damping and stiffness matrices,
respectively, (high-dimensional) vector Z collects the displacements of the degrees-of-freedom of
the structure; the external (non-measured) force n is modelled as a non-stationary white noise with
time-varying covariance matrix QnðtÞ; measurements are collected in the (often, low dimensional)
vector Y ; and matrix L indicates which components of the state vector are actually measured
(where the sensors are located).

The modes or eigenfrequencies denoted generically by m; the eigenvectors fm; and the mode
shapes denoted generically by cm; are solutions of

detðm2M þ mC þ KÞ ¼ 0; ðm2M þ mC þ KÞfm ¼ 0; cm ¼ Lfm: ð2Þ

The frequency and damping coefficient are recovered from a continuous eigenvalue m through

Frequency f ¼
b

2p
; Damping d ¼ �

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; where a ¼ ReðmÞ; b ¼ ImðmÞ ð3Þ
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Some comments are in order on parameterizations of interest for damage detection and
localization. Since a local damage in the structure reduces the stiffness and increases the damping,
many damage detection techniques have been proposed which monitor the stiffness matrix K :
Monitoring its inverse K�1; namely the flexibility matrix, has proven more tractable and
computationally feasible [1,4,5]. In some cases, other structural parameterizations such as volumic
mass and Young elasticity modulus may be preferable [13,1]. Also, several methods in the
literature are based on a transmissibility matrix [3,14], which involves the processing of input–
output data. However, in the case of non-measured input excitation, processing output-only data
is mandatory [15,16]. On the other hand, a reduced stiffness and an increased damping result in
decreased natural frequencies and modified mode-shapes geometry. Thus, monitoring the modal
parameters is relevant, at least for damage detection, especially since the modal parameters can be
estimated by processing output-only data [16]. Damage localization, however, requires (at least
partial) knowledge of structural parameters and geometry.

Consequently, the proposed damage detection method handles the modal parameters, which
enjoy a useful invariance property, as explained next. Moreover, the proposed method does not

make use of any modal parameters extracted from an analytical model, but uses identified modal
parameters instead. The proposed damage localization method handles both modal and structural
parameters, using an original structural aggregation mechanism.

2.2. State-space model and canonical parameterization

Sampling model (1) at rate 1=t yields the discrete time model in state-space form [17,18]:

Xkþ1 ¼ FXk þ Vkþ1;

Yk ¼ HXk; ð4Þ

where the state and the output are

Xk ¼
ZðktÞ
’ZðktÞ

 !
;Yk ¼ Y ðktÞ; ð5Þ

the state transition and observation matrices are

F ¼ eLt;L ¼
0 I

�M�1K �M�1C

 !

and

H ¼ ðL 0Þ: ð6Þ

In Eq. (4), the unmeasured state noise Vkþ1 is assumed to be Gaussian, zero-mean, white, with
covariance matrix:

Qkþ1 ¼
def
EðVkþ1 VT

kþ1Þ ¼
Z ðkþ1Þt

kt
eLs *QðsÞeL

Ts ds;
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where Eð:Þ denotes the expectation operator and

*QðsÞ ¼
0 0

0 M�1QnðsÞM�T

 !
:

The whiteness assumption on the state noise and the absence of measurement noise in Eq. (4) are
discussed in Ref. [19]. It is stressed that sinusoidal or coloured noise excitation can be
encompassed as well. State X and observed output Y have dimensions 2m and r; respectively, with
r (often much) smaller than 2m in practice.

Let ðl;flÞ be the eigenstructure of the state transition matrix F ; namely

detðF � lIÞ ¼ 0; ðF � lIÞfl ¼ 0: ð7Þ

The modal parameters ðm;cmÞ in Eq. (2) can be deduced from the ðl;flÞ’s in Eq. (7) using

etm ¼ l; cm ¼ jl ¼
def

Hfl: ð8Þ

The frequency and damping coefficient are recovered from a discrete eigenvalue l through

Frequency ¼
a

2pt
; Damping ¼

jbjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ;

where a ¼ arctan
ImðlÞ
ReðlÞ

����
����; b ¼ lnjlj: ð9Þ

Eigenvectors are real if C ¼ aM þ bK ; the simplest form of proportional damping. Because of the
structure of the state in Eq. (5), the l’s and jl’s are pairwise complex conjugate.

It turns out that the collection of modes ðl;jlÞ; which form a very natural parameterization for
structural analysis, also enjoy a nice invariance property. Actually, it can easily be shown to be
invariant with respect to changes in the state basis of system (4). In other words, the ðl;jlÞ’s form
a canonical parameterization of the eigenstructure (or equivalently the pole part) of that system.
Let the ðl;jlÞ’s be stacked into a ðr þ 1Þm-dimensional vector y:

y ¼def L

vec F

 !
; ð10Þ

where L is the vector whose elements are the eigenvalues l; F is the matrix whose columns are the
mode shapes jl’s, and vec is the column stacking operator. From now on, vector y is considered
as the system parameter.

It should be stressed that it is not needed to favour a particular normalization of the mode
shapes fm’s and thus of the jl’s, as opposite to the mass normalized modes: fT

mMfm ¼ I used in
e.g. Ref. [5]. As explained below, the proposed damage-to-noise sensitivity ratios are invariant
with respect to such normalizations. However, some care should be taken for damage localization,
while matching identified mode shapes with analytical ones as discussed in 5.2.3.

2.3. Different sensor types

The measurement equation in Eq. (4) with H as in Eq. (6) implicitly assumes that the available
sensors measure the (relative) displacements of the degrees-of-freedom themselves, namely are
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constraint gauges. If constraint gauges, velocity sensors and accelerometers are available, the
measurement equation in Eq. (1) should write

Y ðtÞ ¼

LZðtÞ

N ’ZðtÞ

P .ZðtÞ

0
B@

1
CA

with L;N;P made of 0’s and 1’s, and system (5) should be understood with

H ¼

L 0

0 N

�PM�1K �PM�1C

0
B@

1
CA:

Consequently, state-space model (4) can always be enforced, whatever the sensors are. The nature
of the sensors used only influences the observation matrix H:

2.4. The damage detection and localization problems

In this paper, damage detection is stated as the problem of detecting changes in the canonical
parameter vector y defined in Eq. (10). It is assumed that a reference value y0 is available.
Generally, such a reference parameter is identified using data recorded on the undamaged system.
Of course, when the monitored system is subject to non-stationary input excitation, the reference
value y0 should be identified on long data samples containing as many of these nuisance changes
as possible. However, it is important to note that, with the proposed method, the detection
problem may be solved on the basis of data samples of much smaller size.

Given, on one hand, a reference value y0 of the model parameter and, on the other hand, a new
data sample, the detection problem is to decide whether the new data are still well described by
this parameter value or not. The modal diagnosis problem is to decide which components of the
modal parameter vector y have changed. The damage localization problem is to decide which
parts of the structure have been damaged, or equivalently to decide which elements of the
structural parameter matrices have changed.

Because structural identification is a complex (and generally not fully automatic) process, and
because it is intended to design a damage detection algorithm which can be run on-board, our
approach does not perform a new parameter estimation using the new data sample. Instead, the
damage detection and modal diagnosis problems are solved through the on-board computation
and analysis of a residual. Similarly, because structural model updating is a computationally
involved procedure, the damage localization problem is not addressed as an (usually ill-posed
inverse) estimation problem, but as an evaluation of the correlations of this residual with specific
structural parameter subspaces. This is explained in the next three sections.

3. Damage detection

The design of the proposed damage detection algorithm is based on a general statistical
approach, which aims at transforming a large class of detection problems concerning a
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parameterized stochastic process into the universal problem of monitoring the mean of a Gaussian
random vector [7]. This approach basically addresses the early warning of small deviations of the
system parameter. The key idea is to define a convenient residual, tightly associated with a
relevant parameter estimation method, and to compute the sensitivity of the residual with respect
to damages (viewed as changes in the parameter vector) and the uncertainty in the residual due to
process noise and estimation errors. Moreover, the residual can be shown to be asymptotically
Gaussian. Hence the analysis of the residual’s sensitivity to the damages relative to uncertainties
and noises is easy: a sound decision rule can be designed for assessing whether the residual has
significantly deviated from zero or not.

For structural vibration monitoring and damage detection, the main issue is thus the definition
of a parameter estimating function associated with a modal identification algorithm. The use of an
output-only and covariance-driven subspace-based stochastic identification has been advocated
[16,19]. The residual corresponding to this method is introduced in 3.1. The handling of the
residual sensitivities and uncertainty is addressed in 3.2, and their off-line computation described
in 3.3. The residual analysis and the resulting on-board damage detection algorithm are given
in 3.4.

3.1. Residual associated with stochastic subspace identification

The key steps of the subspace structural identification method are briefly recalled. A
characterization of the modal parameter in Eq. (10) is exhibited, from which the proposed
residual can be defined. Finally, the effect of a truncated modal space is discussed.

3.1.1. Output-only covariance-driven subspace identification

Covariance-driven subspace identification of the eigenstructure ðl;jlÞ’s is based on the
following steps. Let Ri ¼

def
EðYkY T

k�iÞ and

Hpþ1;q ¼
def

R0 R1 ^ Rq�1

R1 R2 ^ Rq

^ ^ ^ ^

Rp Rpþ1 ^ Rpþq�1

0
BBB@

1
CCCA ¼def

HankðRiÞ ð11Þ

be the output covariance and Hankel matrices, respectively. Introducing the cross-covariance
between the state and the observed outputs: G ¼def

EðXkYT
k Þ; direct computations of the Ri’s from

Eqs. (4) lead to: Ri ¼ HFiG; and to the well-known [20] factorization

Hpþ1;q ¼ Opþ1ðH;F ÞCqðF ;GÞ; ð12Þ

where

Opþ1ðH;F Þ ¼def

H

HF

^

HFp

0
BBB@

1
CCCA and CqðF ;GÞ ¼defðG FG?Fq�1GÞ ð13Þ
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are the observability and controllability matrices, respectively. The observation matrix H is then
found in the first block-row of the observability matrix O: The state-transition matrix F is
obtained from the shift invariance property of O; namely

Om
p ðH;F Þ ¼ OpðH;F ÞF ; where Om

p ðH;FÞ ¼def

HF

HF 2

^

HFp

0
BBB@

1
CCCA:

Assuming rankðOpÞ ¼ dim F ; and thus that the number of block-rows in Hpþ1;q is large enough, is
mandatory for recovering F : The eigenstructure ðl;flÞ then results from Eq. (7).

The actual implementation of this subspace algorithm, known under the name of balanced
realization (BR) [21,22], processes the empirical covariance and Hankel matrices

#Ri ¼
def

1=n
Xn

k¼1

YkY T
k�i;

#Hpþ1;q ¼
def

Hankð #RiÞ ð14Þ

and exploits the well-known subspace interpretation of the singular value decomposition (SVD)
[23]: the SVD of #Hpþ1;q—possibly pre- and post-weighted [24]—and its truncation at the desired
model order yield, in the left factor, an estimate #O for the observability matrix O:

W1
#HW T

2 ¼ UDVT ¼ U
D1 0

0 D0

 !
VT;

#O ¼ W�1
1 UD

1=2
1 ; #C ¼ D

1=2
1 VT W�T

2 ;

where W1 and W2 are invertible weighting matrices (design parameters). From #O; estimates ð #H; #FÞ
and ð#l; #flÞ are recovered as sketched above. How to select the number of lags ðp þ qÞ and thus the
size of #Hpþ1;q is discussed in Refs. [16,19].

The key feature in this algorithm is factorization (12), where the left factor O only depends on
the pair ðH;FÞ; and thus on the modal parameters ðl;jlÞ:

3.1.2. Exploiting a canonical parameter characterization
Factorization (12) is the key for a characterization of the canonical parameter vector y in

Eq. (10), and for deriving the parameter estimating function implicitly used in the above subspace
identification algorithm.

Assume that the eigenvectors of matrix F are chosen as a basis for the state space of model (4).
In this basis, the observability matrix in Eq. (13) writes [8]

Opþ1ðyÞ ¼

F

FD

^

FDp

0
BBB@

1
CCCA; ð15Þ

where diagonal matrix D is defined as D ¼ diagðLÞ; and L and F are as in Eq. (10). Then the
following property results from factorization (12). Whether a nominal parameter y0 is in
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agreement with a given output covariance sequence ðRjÞj is characterized by [25,9]

Opþ1ðy0Þ and Hpþ1;q have the same left kernel space: ð16Þ

The left kernel space of matrix M is the kernel space of matrix MT: This property can be checked
as follows. From the nominal modal parameter vector y0; compute Opþ1ðy0Þ using Eq. (15), and
perform e.g. a SVD of W1Opþ1ðy0Þ for defining its left kernel space, namely extracting an
orthonormal matrix S such that ST S ¼ Is and

ST W1 Opþ1ðy0Þ ¼ 0: ð17Þ

Matrix S depends implicitly on parameter y0: It is not unique—two such matrices are related
through a post-multiplication with an orthonormal matrix U : Nevertheless, for reasons which are
made clear below, S can be treated as a function of y0; denoted by Sðy0Þ: Then the characteristic
property (16) writes

UT STðy0Þ W1 Hpþ1;q W T
2 ¼ 0; ð18Þ

where W1 and W2 are invertible weighting matrices as before.
Assume now that a reference parameter y0 and a new data sample Y1;y;Yn are available. For

checking whether the data are well described by y0; the idea is to compute the empirical covariance
sequence and fill in the empirical block-Hankel matrix #Hpþ1;q using Eq. (14), and to define the
residual vector:1

znðy0Þ ¼
def ffiffiffi

n
p

vecðUT STðy0Þ W1
#Hpþ1;q W T

2 Þ: ð19Þ

Let y be the actual value of the parameter for the system which generated the new data sample,
and Ey be the expectation when the actual parameter is y: It results from Eq. (18) that

Eyðznðy0ÞÞ ¼ 0 iff y ¼ y0: ð20Þ

In other words, vector znðy0Þ in Eq. (19) has zero mean in the absence of change in y; and non-
zero mean in the presence of a change (damage). Consequently it plays the role of a residual. The
question is then how to decide that the residual zn is significantly different from zero. In particular,
the sensitivity of the residual with respect to deviations in the modal parameter should be
compared with the fluctuations of the residual around its zero mean. This is discussed below.

3.1.3. On the effect of a truncated modal space

Some issues in dealing with a truncated modal space are now addressed.
Monitoring with a few modes. Many practical situations correspond to the case where actual

data are generated by a system of high order. Controlling the computational complexity of the
processing of the collected data is a standard monitoring requirement, which includes the
reduction from the analytical model to the experimental model. In the same spirit as a truncated
modal space is handled when estimating a flexibility matrix from a few of the lower frequencies
[1,5], the actual computation of residual (19) is achieved using a reference parameter vector y0

containing only a moderate number of modes and a moderate number of components of
associated mode shapes.
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Model reduction. The model reduction issue can be investigated further along the following
lines. When the actual data are generated by a system of higher order than that of the nominal
model y0; or equivalently when the nominal model has reduced order, a new question arises: what
does it mean for a nominal model y0; to match a given data sample when model reduction is
enforced? Of course, system theoretic characterization (16), or (18), is no longer valid, and the
same is true for the definition of the residual in Eq. (19). Other definitions are needed [9], as
sketched now.

Since, rank Hpþ1;q > rank Opþ1ðy0Þ ¼
def

m; condition (16) for perfect matching cannot be satisfied.
What can be required, instead, is that the left kernel space of Opþ1ðy0Þ is orthogonal to the mth
order principal subspace2 of Hpþ1;q: Therefore, let

W1 Hpþ1;q W T
2 ¼ ðPm PmÞ DVT; ð21Þ

where Pm collects the first m left singular vectors of W1 Hpþ1;q W T
2 : Then, Eq. (18) is replaced by

UT STðy0ÞPm DVT ¼ 0;

and the residual is computed as

znðy0Þ ¼
def ffiffiffi

n
p

vecðUT STðy0Þ #Pm
#D #VTÞ ð22Þ

with obvious notations, namely: W1
#Hpþ1;q W T

2 ¼ ð #Pm
#PmÞ #D #VT: It turns out that, because of

our practical implementation of residual (19), and especially how the integer index p for Hpþ1;q is
selected, the use of residual (22) does not seem to lead to any significant performance
improvement. This suggests that the test based on Eq. (19) is itself somehow robust to model
reduction (since the above conceptual attempt to overcome this issue does not bring practical
improvement).

3.2. Residual sensitivities and residual uncertainty

A natural approach to analyze the effect of deviations is to compute sensitivities in terms of
gradients. This has been advocated for vibration monitoring as well [2]. Since our approach deals
with small deviations, computing gradients is especially relevant. Because the approach is
statistical, it is natural to consider the mean value (expectation) of those gradients. On the other
hand, the sensitivity matrix of the residual with respect to damages should be examined in the
light of the variance of (or the uncertainty in) the components of the residual vector. Within a
statistical approach, it is also natural to take into account the possible correlations among those
components. This is done now. The off-line and on-board computation stages of the proposed
method are distinguished, in 3.3 and 3.4, respectively.
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3.3. Off-line computations

The sensitivity of the residual with respect to modal changes is computed, and shown to enjoy a
useful invariance property with respect to the normalization of the mode shapes. Then the
computation of the residual covariance matrix is discussed.

3.3.1. Computing the residual sensitivities to modal changes
The mean sensitivity of residual zn with respect to y is defined as

Jðy0Þ ¼
def �1=

ffiffiffi
n

p
@=@yEy0

znðyÞjy¼y0
ð23Þ

¼ þ1=
ffiffiffi
n

p
@=@yEyznðy0Þjy¼y0

; ð24Þ

where the last equality results from Eq. (20). From Eq. (24) and using Eq. (12), it can be shown
that [9]

Jðy0Þ ¼ ðW2#UT STðy0Þ W1ÞðHT
pþ1;q O

wT
pþ1ðy0Þ#Iðpþ1ÞrÞO0

pþ1ðy0Þ; ð25Þ

where Ow
pþ1ðy0Þ is the pseudo-inverse of Opþ1ðy0Þ; and where

O0
pþ1ðy0Þ ¼

def
@=@yvecOpþ1ðy0Þ

¼

L
0ðpÞ
1 #j1 0

&

0 L
0ðpÞ
m #jm

0
BB@

��������
LðpÞ

1 #Ir 0

&

0 LðpÞ
m #Ir

1
CA ð26Þ

with LðpÞT
i ¼defð1 li l

2
i y lp

i Þ;L
0ðpÞT
i ¼defð0 1 2 li y p lp�1

i Þ for 1pipm:
A consistent estimate #J; based on a data sample, results from substituting #H for H in Eq. (25):

#Jðy0Þ ¼ ðW2#UT STðy0Þ W1Þð #HT
pþ1;q O

wT
pþ1ðy0Þ#Iðpþ1ÞrÞO0

pþ1ðy0Þ: ð27Þ

Note that all the terms in Eq. (27) should be computed when the reference parameter y0 is
identified, and using the same reference data. Note also that matrix O0

pþ1ðy0Þ is full rank ðr þ 1Þm;
as can be checked from Eq. (26). Finally, because the modes and mode shapes are pairwise
complex conjugate, the actual implementation of the computation above should take advantage
of the real and imaginary parts, as made explicit in the appendix.

3.3.2. The sensitivity is invariant with respect to mode-shapes normalization
The sensitivity matrix Jðy0Þ and its estimate #Jðy0Þ enjoy a practically useful invariance

property: they do not depend on the particular normalization of the eigenvectors jl stacked in y0

defined in Eq. (10). Actually, multiplying the jl’s by constant complex numbers amounts to post-
multiply observability matrix Opþ1ðy0Þ in Eq. (15) by an invertible diagonal matrix D; to post-
multiply matrix OwT

pþ1ðy0Þ by D�1; and to pre-multiply matrix O0
pþ1ðy0Þ by ðD#Iðpþ1ÞrÞ: And all the

terms in D cancel out in Eq. (27). It should be noted that this invariance property only holds true
for damage detection. For damage localization, some care should be taken of mode shapes
normalization, as explained in Section 5.2.
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3.3.3. Computing the residual uncertainty

The residual covariance matrix is: Sðy0Þ ¼
def

limn-N Ey0
ðzn z

T
n Þ; where it is assumed that the limit

exists. Matrix S captures the uncertainty in zn due to estimation errors. Actually, the covariance
matrix of the error in estimating y0 can be shown to be this Sðy0Þ as well [26].

The estimation of covariance matrix S is somewhat tricky [27,28]. The following estimate is
used in the experiments below. Assuming the whole sample size as NEKc; the data sample is
partitioned into K segments with size c; and the following estimate is computed:

#S ¼
1

Kc

XK

k¼1

zk z
T
k ; ð28Þ

where zk is residual (19) computed on segment k; using the data sample Yðk�1Þcþ1;y;Ykc:
It should be noted that this estimate contains the excitation, and thus is affected by changes in

the excitation. Therefore, and this is confirmed in the asymptotic Gaussianity theorem below, it is
preferable to estimate it after collecting a new data sample. However, for the sake of reducing the
computational complexity, it is often estimated prior to testing, using data on the safe system. The
drawback of the latter approach over the former is that the w2-test below may detect changes due
to the excitation and not to the structural properties.

3.4. On-board residual analysis

Testing if y ¼ y0 holds true requires the knowledge of the probability distribution of znðy0Þ:
Unfortunately, this distribution is generally unknown. One way to circumvent this difficulty is to
assume close hypotheses

ðSafeÞ H0 : y ¼ y0 and ðDamagedÞ H1 : y ¼ y0 þ dy=
ffiffiffi
n

p
; ð29Þ

where vector dy is unknown, but fixed. Note that for large n; hypothesis H1 corresponds to small
deviations in y: This is known under the name of statistical local approach, of which the main
result is the following [7,26,27].

3.4.1. The residual is Gaussian

Provided that Sðy0Þ is positive definite, the residual zn in Eq. (19) is asymptotically Gaussian
distributed with the same covariance matrix Sðy0Þ under both H0 and H1; that is [9]

znðy0Þ n-N
��! Nð0; Sðy0ÞÞ under H0;

NðJðy0Þ dy; Sðy0ÞÞ under H1:

(
ð30Þ

As seen in Eq. (30), a deviation dy in the system parameter y is reflected into a change in the mean
value of residual zn; which switches from zero (in the undamaged case) to Jðy0Þdy; as expected, in
case of small damage. Note that matrices Jðy0Þ and Sðy0Þ depend on neither the sample size n nor
the fault vector dy in hypothesis H1: Thus, it is not needed to re-estimate them when testing the
hypotheses after collecting a new data sample, they can be estimated prior to testing, using data
on the safe system (exactly as the reference parameter y0). In case of non-stationary excitation, a
similar result has been proven, for scalar output signals, and with matrix S estimated on newly
collected data [29].
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3.4.2. On-board w2-test for damage detection

Let #J and #S be consistent estimates of Jðy0Þ and Sðy0Þ; and assume additionally that Jðy0Þ is
full column rank (f.c.r.). Then, thanks to Eq. (30), deciding that residual zn is significantly different
from zero, stated as testing between the hypotheses H0 and H1 in Eq. (29), can be achieved with
the aid of the following w2-test statistics:

w2
n ¼

def zT
n
#S�1 #Jð #JT #S�1 #JÞ�1 #JT #S�1 zn ð31Þ

which should be compared to a threshold. In Eq. (31), the dependence on y0 has been removed for
simplicity. The only term which should be computed after data collection is the residual zn in
Eq. (19). Test statistics w2

n is asymptotically distributed as a w2-variable, with rankðJÞ degrees-of-
freedom. From this, a threshold for w2

n can be deduced, for a given false alarm probability. The
non-centrality parameter of this w2-variable under H1 is dyTJTS�1Jdy: This provides us with the
theoretical mean value of w2

n when a damage is present: number of degrees-of-freedom plus non-
centrality parameter. In practice, however, the actual values of w2

n are much higher than those
theoretical values. How to select a threshold for w2

n from histograms of empirical values obtained
on data for undamaged cases is explained in Ref. [12].

3.4.3. The w2-test is invariant with respect to design matrices
The test in Eq. (31) enjoys a nice invariance property with respect to the choice of the design

matrices in the subspace-based approach. The three design matrices U ;W1;W2 are made explicit
in the notation zn;U ;W1;W2

ðy0Þ for residual (19). A straightforward calculation shows that

zn;U ;W1;W2
¼ ðW2#V1Þzn;I ;I ;I ; ð32Þ

where # is the Kronecker product, and V1 is any invertible matrix such that:
UTSTðy0ÞW1 ¼ V1STðy0Þ; for example, V1 ¼ UTSTðy0ÞW1Sðy0Þ [30]. Now, if *z ¼def

Az; then *J ¼
AJ and *S ¼ ASAT; as can easily be checked, and using obvious notations. Therefore, if w2

n;U ;W1;W2

denotes the w2-test (31) associated with zn;U ;W1;W2
; from Eq. (32) it comes that

w2
n;U ;W1;W2

¼ w2
n;I ;I ;I

since the invertible matrix ðW2#V1Þ factors out in Eq. (31). Thus, for damage detection, all the
proposed subspace-based methods are equivalent, when using the true system order.

4. Modal diagnosis

Modal diagnosis consists in determining which eigenfrequencies and associated mode shapes
have been affected by the damage. This problem may be addressed as an estimation problem,
based on modal identification in the pre- and post-damage stages. Typically, the changes in the
frequencies obtained from experimental data are then compared with the sensitivity of modal
parameters obtained from an analytical model [1,2]. In the proposed approach, modal diagnosis is
stated as a detection problem instead. Moreover, no analytical model is handled at this stage. The
rationale is the same as for addressing the damage detection problem above: having a (usually
identified) reference modal parameter y0 in one hand and a new data sample in the other, decide
which modes and mode shapes have deviated from their reference values.
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4.1. Residual sensitivities and residual uncertainty

As for the damage detection problem, in a statistical framework the key issue is again to assess
the significance of the residual sensitivity to specified modal changes with respect to the residual
uncertainty. In other words, directional tests, focussed in specific directions of the modal space,
should be designed. At this point, it should be noted that the sensitivity of the residual zn with
respect to a specified mode and associated mode shape can be extracted as the corresponding
columns of the Jacobian matrix Jðy0Þ of which an estimate is given in Eq. (27).

4.2. On-board w2-test for modal diagnosis

Thus let #Jj be the estimated Jacobian matrix corresponding to mode and mode shape j: This is
obtained by picking up the corresponding columns in matrix O0

pþ1ðy0Þ in Eq. (26). An alternative,
and equivalent, computation is detailed in the appendix, which leads to Eq. (48). The counterpart
of test (31), namely the directional or sensitivity test focussed on this mode j; writes

wð jÞ2
n ¼def zT

n
#S�1 #Jjð #JT

j
#S�1 #JjÞ

�1 #JT
j
#S�1zn: ð33Þ

As for damage detection above, the only term which should be computed after data collection is
the residual zn defined in Eq. (19). Of course, it is often not easy to interpret the results provided
by a collection of such tests focussed on specific modal parameters. Those tests are of interest only
when some modal parameters are subject to changes much larger than the others. This is the case
for flutter monitoring [31].

5. Damage localization

Damage localization consists of determining which part of the structure has been affected by
the damage, more precisely which (groups of ) elements of the structural parameters matrices (e.g.,
M;C;K) have changed. This problem is often addressed as an inverse estimation problem, based
on an analytical model in the pre-damage stage and on modal identification in the post-damage
stage. Typically, the deviations in the structural parameters corresponding to the observed
deviation in the modal parameters are searched for using model updating techniques [32–34]. In
the proposed approach, damage localization is stated as a detection problem instead. Of course,
an analytical model is handled at this stage. The rationale is similar to the approach for modal
diagnosis above: having a (usually identified) reference modal parameter y0 and a reference
structural (FEM) analytical model in one hand, and a new data sample in the other, decide which
structural parameters have deviated from their reference values.

5.1. Residual sensitivities and residual uncertainty

As for the damage detection and modal diagnosis problems, in a statistical framework
the key issue is again to assess the significance of the residual sensitivity to specified structural
changes with respect to the residual uncertainty. As made explicit in Eq. (30), the mean value
of residual zn under the hypothesis H1 of a small deviation dy in the parameter y from a reference
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value y0; is

E1ðznÞ ¼ Jðy0Þdy: ð34Þ

Under the assumption of small deviation again, the relation holds:

dyEJyCdC; ð35Þ

where C is the vector of (FEM) structural parameters to be monitored, and JyC is the Jacobian
matrix containing the sensitivities of the modes and mode shapes with respect to those parameters.

In other words, the damage localization problem is addressed by plugging aggregated
sensitivities of the modes and mode shapes with respect to (FEM) structural parameters in the
setting used for damage detection. Thus, plugging Eq. (35) into Eq. (34), it can be tested, with the
aid of a w2-test again, whether the deviation in the residual zn: E1ðznÞ ¼ JðCÞdC; where

JðCÞ ¼def
Jðy0ÞJyC ð36Þ

is significant or not. This results in directional tests, focussed in specific directions of the structural
space, which perform the same type of damage-to-noise sensitivity analysis of the residual as for
damage detection and modal diagnosis. These tests deliver damage diagnostics and localization
information, without solving any inverse problem for model updating.

Of course, since the dimension of the structural parameter space is much higher than the
dimension of the modal parameter space, the dy in Eq. (35) are linearly dependent, even if the dc’s
are not. The idea [13,35,36] is somehow to cluster the deviations dc in the structural parameter
space. The steps of this damage localization approach are now described in detail. The off-line
and on-board computation stages are distinguished, in 5.2 and 5.3, respectively.

5.2. Off-line computations

The off-line stage is devoted to the computation of the residual sensitivities with respect to
structural changes. First the different parameterizations and Jacobians which are needed for this
purpose are explained. Then three design steps are described: computing sensitivities (35),
matching theoretical and actual sensitivities, aggregating the sensitivities.

5.2.1. Computing the residual sensitivities to structural changes

For computing the residual sensitivity with respect to structural changes given in Eq. (36), the
Jacobian JyC defined in Eq. (35) must be computed. For this purpose, in addition to the
structural parameterization C; two other parameterizations are needed: FðdÞ

i ¼def y; the set of
the (discrete) identified modal parameters, and Fa; the set of the (continuous) analytical modal
parameters computed from Eq. (2). Since the former is a discrete time parameterization and the
latter a continuous time parameterization, the continuous time counterpart Fi of FðdÞ

i ; obtained
using Eq. (8), is also needed. Moreover, the re-parameterization of the modes in terms of
frequencies and damping coefficients are needed for both Fi and Fa; which are noted Wa and Wi;
respectively.

It should be stressed that, when the system is assumed to be conservative, namely C ¼ 0; which
is often the case in FEM models, Fa contains all the frequencies, but not the damping coefficients,
of the structure, and all the mode shapes, which are real and usually mass normalized. Also, the
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FEM mode shapes have as many components as the total number of available sensors. Whereas Wi

contains those of the frequencies and associated mode shapes contained in the signature y0 which
turn out to match with modes in Wa: Also, the mode shapes have as many components as the
actual number of sensors used and are not mass normalized.

Altogether, the sensitivity JðCÞ defined in Eq. (36) writes

JðCÞ ¼ Jðy0ÞJFðdÞ
i
Fi
IFiWi

JWiWa
IWaFa

JFaC; ð37Þ

where JFðdÞ
i
Fi

is the Jacobian of transformation (8) of the discrete modes into continuous ones;
IFW is the Jacobian of conversion (3) of the complex modes into continuous frequencies and
damping coefficients, and IWF is the Jacobian of the inverse conversion; JWiWa

corresponds to the
manual matching between the identified modes and the analytical (computed) ones; JFaC
represents the sensitivities of analytical modes to changes in structural parameters. The three
former Jacobians are computed in the appendix, whereas the two latter are derived in this section.

At this point, one comment is in order about the damage detection w2-test in Eq. (31) and the
modal diagnosis test in Eq. (33). These tests are computed using #JJFðdÞ

i
Fi
IFiWi

instead of #J: But
this does not make any difference, since the two matrices JFðdÞ

i
Fi

and IFiWi
are square invertible

and cancel out in Eqs. (31) and (33).

5.2.2. Computing the sensitivities of analytical modes to structural changes

The derivation of JFaC is described now. Differentiating the second equation in Eq. (2), it
comes:

dmð2mM þ CÞfþ ðm2M þ mC þ KÞdfþ m2dM þ mdC þ dK ¼ 0 ð38Þ

[35–38]. When the matrices M;C;K are symmetric, pre-multiplying Eq. (38) with fT; and using
fTðm2M þ mC þ KÞ ¼ 0 which results from that symmetry, yield

dm ¼ �
fTðm2dM þ mdC þ dKÞf

fTð2mM þ CÞf
: ð39Þ

In case of an asymmetric system, the results of Ref. [39] should be used instead. They generalize
the approach of Ref. [40], which is based on a complete modal basis. An overview on different
types of approximation methods for handling incomplete modal bases can be found in Ref. [41].

Plugging Eq. (39) into Eq. (38) yields the following linear system in df:

ðm2M þ mC þ KÞdf ¼ �dmð2mM þ CÞf� ðm2dM þ mdC þ dKÞf: ð40Þ

This system has no unique solution: if df is a solution, then dfþ af; where a is a real constant, is
also a solution. The solution df that is orthogonal to f is selected, namely

fTdf ¼ 0 ð41Þ

and then pre-multiplied by the observation matrix

Ldf ð42Þ

since the mode shapes are of interest. For each dM; dC and dK ; Eqs. (39)–(42) yield the
corresponding change in the whole modal parameters set Fa: This leads to the first order
sensitivity relationship: dFa ¼ JFaCdC; where each column of sensitivity matrix JFaC
corresponds to a change in a structural parameter.
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At this point, a comment is in order, on mode-shape normalization. As is obvious from
Eq. (40), the actual value of df depends on the normalization chosen for f: Therefore, it is
important here to work with analytical mode shapes normalized in the same way as the identified
ones. Typically, the first component is fixed equal to one.

5.2.3. Matching theoretical and actual sensitivities
How to match the changes in Wa with the changes in Wi is explained now. It is well known that

there is usually a discrepancy between the numerical modes Wa provided by the analytical (FEM)
model, and the identified modes Wi: Moreover, whatever the modal identification method is, there
is an estimation error on Wi: Consequently, WiaWa in general. However, this discrepancy between
Wi and Wa is not crucial within our damage localization approach. Actually, Wi is the reference
modal signature and must be accurately determined, which is ensured by the subspace-based
identification method, whereas Wa is only used for computing a Jacobian matrix of sensitivities
(change directions). A small error in such a direction enters the algorithm at a second order level
in the residual zn: It is expected that this does not corrupt the localization delivered by the method.

Moreover, it should be noticed that the matching between Wi and Wa is generally partial. On one
hand, only the first few natural modes are excited and/or observed, whereas p degrees of freedom
finite element model yields p modes, with p often very large (several hundreds). Consequently, Wi is
at best strictly included in Wa: On the other hand, Wi may contain modes which are not related to
the eigen parameters of the structure. These modes appear in the presence of an harmonic
excitation (as it is the case for rotating machineries for example Ref. [6]), or when the effect of the
environment should be considered as an unknown coloured noise, instead of a white noise as in
Eq. (1).

Therefore, it is assumed that: dWi ¼ JWiWa
dWa; where JWiWa

is a selection matrix which performs
the correlation between the analytical (computed) modes and the identified ones.

5.2.4. Aggregating the sensitivities

The (M;C;K) parameterization has generally many more parameters than the modal model.
Thus, there are many more columns than lines in matrix J in Eq. (37). Moreover, using a small
number of sensors, it is not reasonable to expect the discrimination of all possible structural
causes of a given deviation detected by the global damage detection test (31). To circumvent this
difficulty, the idea is to aggregate the columns of J into clusters, which play the role of macro-
failures, and for each cluster to define a barycentre, which plays the role of a Jacobian to be
plugged in Eq. (31).

The w2-metric: In order to make the aggregation operation coherent with the w2 decision stage,
the metric chosen for performing the clustering is the metric of the w2-test. More precisely, let the
jth change direction be defined as the vector

Jj ¼ #S�T=2
n Jðy0ÞJFðdÞ

i
Fi
IFiWi

JWiWa
IWaFa

JFaCð jÞ; ð43Þ

where JFaCð jÞ is the jth column of JFaC; and where #S�T=2
n is the ‘square root’ of the inverse of the

covariance matrix #Sn: #S�1
n ¼ #S�1=2

n
#S�T=2

n : Note that such a decomposition is always possible since
#Sn is guaranteed to be strictly positive definite from its numerical computation in (28).
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Furthermore, the norm and the scalar product of the Jj’s are defined as

jjJj jj
2 ¼ JT

j Jj; dij ¼
JT

i Jj

jjJijjjjJj jj
: ð44Þ

Removing the small vectors: Vectors with a very low magnitude are likely to blur the
results of the aggregation. Consequently, prior to clustering, small vectors are rejected using
the following rule, based on the contrast (ratio) between the expectations of the directional
test under no damage and small damage assumptions [13]. By definition, vector Jj corresponds
to a change with rate 1 in physical parameter j: Therefore, up to a first order approximation,
for a change with magnitude R in the jth direction, the change vector is RJj: The expectation
of the corresponding sensitivity test (33) is equal to 1 under no damage hypothesis and to
ð1 þ R2JT

j JjÞ under this damage hypothesis. The above mentioned contrast is thus: 1 þ R2JT
j Jj:

Consequently, considering that a damage with magnitude R in direction Jj is detectable
provided that this contrast exceeds a threshold E1; the minimum magnitude of a damage
for being detectable should be: Rmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 � 1

p
=jjJj jj: A damage vector Jj will be rejected

if this minimum damage magnitude cannot be reached, e.g., because greater than a percentage
of variation on the physical parameters, namely if: RminXE2=100: Altogether, the rejection
rule for small vectors writes: jjJj jjp100

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 � 1

p
=E2; where E1; E2 are two thresholds selected by the

user.
Clustering the remaining vectors: Since change directions are of interest, rather than

change magnitudes, the change vectors to be clustered are normalized within this metric.
Therefore, the aggregation process should work on the unit sphere, and a classification
method able to handle this geometry is needed. For this reason, a vector quantization method
[42,43] of common use in speech processing has been chosen [13]. This method performs a
hierarchical classification, while controlling the variability within the classes. For each class, a
barycentre Cj is computed. This aggregation mechanism can thus be thought of as a statistical
sub-structuring.

5.3. On-board w2-test for damage localization

For performing damage localization, it should be assessed, for each barycentre Cj;
whether the corresponding damage is significant or not. This problem is similar to the
damage detection and modal diagnosis problems addressed in Sections 3.4 and 4.2, respectively,
and is solved in the same manner. Because of Eq. (43), the following normalized residual
should be considered: *zn ¼

def #S�T=2
n zn: Then the counterpart of the w2-test in Eq. (33) is easily shown

to write

w2
nð jÞ ¼ *zT

n

CjC
T
j

jjCj jj
2
*zn:

Its number of degrees of freedom is equal to rankðJjÞ:
Assume that w2

nð jÞ exceeds a given threshold. Then, all the structural elements within the class
corresponding to the barycentre Cj are possible causes of the detected damage.
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6. Discussion and relation to other works

Several issues are addressed in this section, concerning the design and the handling of residuals
for damage detection and localization. First some further comments on the design of residuals for
fault or damage detection are provided. Then the subspace-based damage detection residual
introduced in Section 3 is related to some other residuals, used for damage localization or model
updating. Finally, some lessons learnt from practical experiments are provided.

Residuals for fault detection: Model-based approaches to fault detection and isolation have been
investigated, in Refs. [44–46] to mention but a few. They build on discrepancies between process
model outputs and measured outputs, generically called residuals, often generated as an output
prediction error:

ekðyÞ ¼
def

Yk � #Ykjk�1ðyÞ; ð45Þ

where #Ykjk�1ðyÞ is a one-step ahead prediction of the output data, computed on the basis of the
parameterized model. The residual ek is then evaluated through a comparison with given
thresholds. From a conceptual point of view, however, this type of residual suffers from the
following limitation. If the system is linear, written in an input–output or state-space form, and
whatever the estimation method is, the prediction #Y is a linear combination of measured inputs
and outputs. Stated otherwise, residual (45) is a first order statistics in that case. But, from
statistical inference theory, it is known that for performing inference about second-order
characteristics—here, (modal) vibrating characteristics, or equivalently the eigenstructure of a
linear state space system—, it is mandatory to use (at least) second order statistics, that is
covariances. Using linear combinations of the output data is not sufficient (in the statistical sense).
This might be contrasted with some of the symptoms discussed in Ref. [47]. It should be noted
that the subspace-based residual defined in Eq. (19) is actually a linear combination of the output
covariances, and indeed is aimed at monitoring the system eigenstructure, as desired.

The above remark does not mean, however, that the prediction error (45) should not play any
role in residual generation. As clearly stated in the system identification literature [48–50], a
parameter estimate should be updated with the aid of the gradient of the squared prediction error
with respect to the parameter: �1=2@ðeT

k ðyÞ ekðyÞÞ=@y: And if the faults or damages affect the
dynamics of the system, a residual built on that gradient is relevant too.

Subspace-based residuals and other health monitoring residuals: How the proposed subspace-
based residuals relate to some other damage localization and model updating residuals in the
literature is now discussed. In Ref. [1], damage detection is based on changes in the flexibility
matrix computed as F ¼ FO�1FT; where diagonal matrix O; called modal stiffness matrix in the
case of proportional damping, is the stiffness matrix of the single degree-of-freedom system
resulting from decoupling of the equations by transformation to modal co-ordinates. The damage
locating vectors introduced in Ref. [5] are the last right singular vectors, namely the singular
vectors associated with singular value 0; of the change dF ¼def

F1
i �F0

i in the measured flexibility
matrix computed as F ¼def

K�1: In other words, these vectors form the kernel space of matrix DF:
When viewed as loads on the system, they lead to stress fields identically zero over the damaged
elements. This property is considered in Ref. [5] as a damage localization ability. An important
limitation is that this is basically an input–output approach. However, the method can be
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extended to flexibility proportional matrices which can be computed from output-only data [51].
On the other hand, the subspace-based residuals z in Eq. (19) are derived from the first left
singular vectors of the observability matrix in modal basis Oðy0Þ; from which matrix Sðy0Þ in
Eq. (19) is computed. In other words, for computing z; the kernel space of matrix OTðy0Þ is
needed.

One class of residuals used for model updating in Ref. [32] has the form: W ðyi � ya �JFaCdCÞ;
where W is a weighting matrix (design parameters), and subscripts i; a have the same meaning as
in 5.2.1. In other words, these residuals are based on discrepancies between identified and
analytical modal parameters. This has to be contrasted with the residuals in Eq. (19) which handle
altogether the identified modal parameters in y0 and newly collected data in #H: These residuals do
not involve any analytical model, and do not require any re-identification of the modal
parameters on the new data. Moreover the w2-test in Eq. (31) involves the precision in the
estimated modal parameters [26]. These test statistics allow assessment of whether a deviation in
the reference modal parameter is significant with respect to the inherent inaccuracy in the modal
parameter estimate.

In Ref. [33], strong emphasis is put on the physical meaning of the chosen parameterization. It
has been argued above, however, that balancing this property with requirements on invariance
with respect to changes in the state-space basis on the one hand, and on modal identifiability and
detectability properties on the other one, provides other useful points of view.

Another overview of residuals used within model updating methods can be found in Ref. [52].
On the use and physical interpretation of the SVD: It is well known that one major by-product of

the singular value decomposition (SVD) is to provide us with various subspaces of interest, among
which are the right and left kernels (null space) of the considered matrix [23]. As highlighted in
Ref. [47], the use of the SVD for the purpose of damage detection and localization is thus
widespread. Moreover, the physical interpretation of the corresponding vectors is an important
issue. As mentioned above, the SVD is used in Ref. [5] for extracting the null space of the change
dF in the flexibility matrix measured in both undamaged and damaged situations. The singular
vectors are interpreted in terms of loads with null stress, and each singular value is interpreted as
the difference in the external work done by the associated singular vector. In the approach of this
paper, the SVD is also used for extracting the null space of a matrix, namely the transpose of the
observability matrix. Moreover, as explained in 3.1.3 and confirmed by extensive numerical
experiments, the SVD helps in overcoming non-stationary ambient excitation.

On the mode shapes normalization: The last comment on the design and computation of
residuals for health monitoring concerns the mode-shape normalization [41]. As outlined in 3.3.2,
the proposed damage detection w2-test is invariant with respect to mode-shape normalization,
which is a useful property in practice. This has to be contrasted with the approach in Ref. [5].

Structural aggregation: Now some comments are in order on the statistical clustering of the
sensitivities of the modes and mode shapes with respect to FEM parameters described in Section
5. It should first be noted, from Eq. (43), that noise-normalized sensitivities are handled in the
proposed approach. Consequently, the norm and scalar product defined in Eq. (44) introduce a
noise-normalized metric for assessing the size of the modes and mode-shapes sensitivities to
changes in structural parameters. Here noise refers to both measurement noise and modal
estimation errors, as pointed out in 3.3.3. This has to be contrasted with the modal appropriation
criterion (MAC) value, which is, in some sense, an absolute value: the MAC value does not take
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into account neither any measurement noise, nor any uncertainties in the modes and mode-shape
estimates (measured structural behaviour).

Second, it should be stressed that the statistical procedure described in 5.2.4 performs the
aggregation of physical parameters, and thus generates what can be considered, in some sense, as
super-elements. This procedure might be called statistical substructuring.3

Constraints in and lessons from practice: The algorithms have been successfully applied to a wide
range of real cases, under non-stationary excitation. From those experiments, it appears that the
algorithms have to be tuned during a safe period, from which the covariance and Jacobian
matrices, the empirical mean value and dispersion of the test under the no-damage hypothesis are
estimated. Theoretically, this period should be as long as possible, for example a few months for
the Z24 bridge [12]. But in most cases, where such a long period is not feasible, the test has reacted
almost as well [10,11,31,53]. For damage localization, a reasonable FE model should be used, and
relevant sensors and modal parameters should be selected [54]: localization is negatively affected
when using modal parameters which are not affected by the damage.

7. Conclusion

The damage localization problem has been addressed and stated as a detection problem and not
as an inverse estimation problem. The proposed damage localization method is based on both a
subspace residual and on a statistical analysis of aggregated sensitivities of the residual to the
damages. The key components of the statistical damage detection and damage localization steps
have been described in detail. The computations which can be performed off-line at a design stage
and the computations which have to be done on-line while processing newly recorded data have
been distinguished. The proposed approach has been related to several methods available in the
literature. The present method does not directly perform the discrimination between non-
damaging structural changes such as environmental effects and actual damages. This is known to
be a crucial issue in practice [55]. Some preliminary, indirect and empirical attempts for handling
and overcoming such effects have been reported in Ref. [12] for the Z24 bridge example.
Investigation towards an intrinsic handling and rejection of temperature effects is the topic of
ongoing research.
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has been implemented within two toolboxes: the in-op module of the Lms software cada-x, and
the modal analysis module of the free Inria software Scilab [56–58]. The damage detection and
localization methods have been implemented within the modal analysis module of Scilab, and
within Lms software environment.

Appendix A. Some Jacobian computations

This appendix is twofold. First the sensitivity Jðy0Þ to modal changes in Eq. (25), in particular
matrix O0

pþ1ðy0Þ; is explicited. Second, the Jacobians JFðdÞ
i
Fi

of transformation (8) of the discrete
modes into the continuous ones, the Jacobian IFW of conversion (3) of the complex modes into
continuous frequencies and damping coefficients, and the Jacobian IWF of the inverse conversion,
are computed.

A.1. Computation of O0
pþ1ðy0Þ for Jðy0Þ

The modes and mode shapes are pairwise complex conjugate, thus observability matrix (15)
writes

Opþ1ðyÞ ¼

F %F

FD FD

^ ^

FDp FDp

0
BBBB@

1
CCCCA: ðA:1Þ

Taking advantage of the real and imaginary parts of the modes and mode shapes, another matrix
is introduced, which results from a post-multiplication of Opþ1ðyÞ by a permutation matrix:

*Opþ1 ¼
def

ReðFÞ ImðFÞ

ReðFDÞ ImðFDÞ

^ ^

ReðFDpÞ ImðFDpÞ

0
BBB@

1
CCCA:

Similarly, from y defined in Eq. (10), define

*y ¼def

ReðLÞ

ReðvecFÞ

ImðLÞ

ImðvecFÞ

0
BBB@

1
CCCA ¼

ReðyÞ

ImðyÞ

 !
:

Now let

Ypþ1 ¼
def

vec

F

FD

^

FDp

0
BBB@

1
CCCA:
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Then

*Ypþ1 ¼
def

vec *Opþ1 ¼
ReðYpþ1Þ

ImðYpþ1Þ

 !
ðA:2Þ

Note that *O0
pþ1 ¼

def
@vec *Opþ1=@*y ¼ @ *Ypþ1=@*y:

Using Cauchy–Riemann theorem, from Eq. (A.2) it comes that

@ *Ypþ1=@*y ¼
@ReðYpþ1Þ=@ReðyÞ @ReðYpþ1Þ=@ImðyÞ

@ImðYpþ1Þ=@ReðyÞ @ImðYpþ1Þ=@ImðyÞ

 !
:

Therefore, the computation of O0
pþ1ðy0Þ proceeds as follows: Compute O0

pþ1 from Eq. (26) using
only half of the modes and mode shapes; Fill in M ¼defðO0

pþ1 iO0
pþ1Þ; Then

O0
pþ1ðy0Þ ¼

ReðMÞ

ImðMÞ

 !
: ðA:3Þ

A.2. Computation of JFðdÞ
i
Fi
;IFW and IWF

Since none of transformations (8) and (3) affect the mode shapes, the restriction of the Jacobian
to the eigenvectors is, in the three cases, the identity matrix with size 2mr: Thus, in each case, the
focus is first on the restriction of the Jacobians to the eigenvalues.

Computation of JFðdÞ
i
Fi

: Using the notation a ¼ ReðmÞ; b ¼ ImðmÞ; x ¼ ReðlÞ; y ¼ ImðlÞ; the first
equation of Eq. (8) writes: x ¼ eta cosðtbÞ; y ¼ eta sinðtbÞ; from which it is deduced that

@x=@a @x=@b

@y=@a @y=@b

 !
¼ t

x �y

y x

 !
¼ t

ReðlÞ ReðilÞ

ImðlÞ ImðilÞ

 !
¼def

Ml:

Then

JFðdÞ
i
Fi

¼

Ml1

& 0

Mlm

0 I2mr

0
BBB@

1
CCCA:

Computation of IFW: Relation (3) writes equivalently: a ¼ �2pfd=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � d2

p
; b ¼ 2pf ; from

which it is deduced that

@a=@d @a=@f

@b=@d @b=@f

 !
¼

�2pf =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � d2Þ3

q
�2pd=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � d2

p
0 2p

0
@

1
A ¼def

A:
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Then

JFW ¼

A1

& 0

Am

0 I2mr

0
BBB@

1
CCCA:

Computation of IWF: The Jacobian of relation (3) writes

@d=@a @d=@b

@f =@a @f =@b

 !
¼

�b2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ3

q
�2ab=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ3

q
0 1=2p

0
@

1
A ¼def

B

Then

JWF ¼

B1

& 0

Bm

0 I2mr

0
BBB@

1
CCCA
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